

Postharvest Technologies for Residue Remediation

MRL Harmonization Workshop – 4 June 2015

SDA Specialty Crop Chemist – Primary Focus

Spencer Walse

- QPS scenario & methyl bromide
 - low-emission fumigations
 - alternatives
 - PH3, SF
- Break specialty crop trade barriers
 - pests (insects), microbes, residues
 - systems-based approaches
 - mathematical modeling
 - method/process development

30,000 ft view – what do we want to do?

(Proactively) Address Consumer & Regulatory Demands.....

....for the Global Market

Agricultural Conundrum – must use chemicals, but can't????

food safety (antimicrobials)

no treatment residue (MRLs)

So many chemicals are involved

- Plant & insect biomolecules
- What can you use?
- How much can you use?
- How much do you need?
- How long do they last?
- When to apply rotate use?
- Does use impact global marketing?

Where there are chemicals......

there is a need for chemical analysis & getting rid of them

Opportunity to impact

chemically-related trade barriers

"SYSTEMS-BASED"

PREPLANT

PRODUCTION

POSTHARVEST

decay curves

start

finish

any tool along the line is welcome & embraced!

Opportunity to impact chemically-related trade barriers

- Traditional logistics/ infrastructure
 - Imports → proximity to port terminals
 - Exports → packing, processing facilities
 - Domestic → hybrid of above

Postharvest is key!

Retrospective analysis – why not MRLs?

- Systems alternatives to methyl bromide
 - OFF in cherries
 - SWD in table grapes
 - ACP in citrus
 - Medfly in green tomatoes

"ACP packinghouse project" domestic implications

Systems evaluation: where we sit now

joint events	% mort _. (95% LOC)	P (E ₁ +E ₂ +En) (95% LOC)	probit (95% LOC)
Σ soak + brushes Σ soak + rollers	99.999560	4.4 E-6	9.44
Σ soak + rollers Σ soak + dryer-135s	99.999577 99.998520	4.2 E-6 1.5 E-5	9.45 9.18
Σ soak + brushes + dryer-135s	99.999987	1.3 E-3 1.3 E-7	10.15
Σ soak + rollers+ dryer-135s	99.999987	1.3 E-7	10.16

Exceeding "Probit 9" benchmark without postharvest fumigation

Cherry trade barriers: (necessitate use of chemicals)

Cherry MRL trade barriers: key markets jeopardized by residues

industry needs:

- better detection & better records of detection
- ways to minimize, or ELIMINATE, residues

Our recent advances in ozone fumigation enable residue removal : many improvements possible

ARTICLE

pubusocom/ex

Remediation of Fungicide Residues on Fresh Produce by Use of Gaseous Ozone

Spencer S. Walse** and Hakan Karaca*

"Agricultural Research Service, United States Department of Agriculture, 9611 South Riverbend Arvenue, 93648, Farker, California, United States

*Department of Food In gineering, Faculty of Engineering, Famulkale University, 20070 Camilk, Denixii, Turkey

C Separate Separation

ABSTRACT: Chone furrigation was explored as a means for degrading organic fungic dense does on first hypothese. Fungicides corbed onto model ablotic glass surfaces or on to grap a benties were furrigated separately in a flow-through dumber. Gaseous come at a constant concentration of 150 \pm 10 ppmv (p.1-1. $^{-2}$) selectively oxidized fungicides so rised to model surfaces. Over 140 mis, bounded and ignodone levels did not change significantly based on a single-factor analysis of variance (ANOVA) at the 95% level of confidence (p = 0.05); however, preade-first-order losses resulted in observable rate constants of cosmolysis, $k_{\rm cross-tok}$ (min $^{-3}$), of 0.023 \pm 0.0030 ($k_{\rm LS} \approx 41.5$ min), 0.088 \pm 0.0031 ($k_{\rm LS} \approx 41.5$ min), and 0.0127 \pm 0.0010 ($k_{\rm LS} \approx 54.6$ min) for furthermoid, opportunit, and pyrimeth axil, respectively. The relative degradation of fungicides on benties at gaseous one connectation of 900 \pm 12 ppmv (p.1-1. $^{-3}$) over 2 hwas

similar to that on glass, decrease in residue concentration were observed for only Schwamid (\sim 69%), opposited (\sim 39%), and pyrimeth xall (\sim 35%) with corresponding $k_{\rm corr}$ $k_$

Residue remediation w/ O3: structurally selective

~2 ~2 64 38 40 % degradation

$$NH_2$$

1-methylcyclohexanecarboxamide

small bits & chunks + CO2

-can this be sold as a band-aid?
-can this be sold as a civil service?

Considerable regulatory precedence AOPs

ozone vs. chlorine (amination)

Ozone fumigation

Will my product look worse? Situation dependent

Cherries?

ozone treated

not treated

Ozone fumigation

Will worse products form? more polar = less toxic (ozone)

- Endocrine disruptors
 - endosulfan and sulfate
- POPs
 - paraoxon and parathion

endosulfan story

parathion story

Optimized fumigation blend

(mineralization of key targets)

propiconazole

We assembled a trusted team to research residue science via USDA-FAS-TASC program

fumigation development residue detection & tech transfer

Northwest Horticultural Council & WTFRC

John Ferry S.M. Angel

residue indexing & forecasting

fumigation development & in-field / in-shed real-time residue detection

Thank you!

"Mr. Osborne, may I be excused? My brain is full."