Global Residues & MRL’s Harmonization

A Registrant’s Perspective

Carmen Tiu
Global Residue Leader
Regulatory Sciences and Government Affairs
Presentation Outline

1. Requirements for residues & MRLs
2. Harmonization opportunities
3. Global residue program - example
4. Challenges for MRLs harmonization
5. Conclusions & Recommendation
1. Global Residues Requirements

Current regulatory framework set by OECD

- Crop Field Trials: OECD 509 + guidance
 - Comprehensive global packages
 - 40% fewer trials than nationally required
 - 50% data from overseas
- OECD global joint-reviews
- OECD MRL-calculator
2. Harmonization Opportunities

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical ID</td>
<td>1100</td>
<td>Annex II, 6.0</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Directions for use (GAPs)</td>
<td>1200</td>
<td>Annex II, 6.0</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NOR: plants, animals, livestock</td>
<td>1300</td>
<td>Appendix A, E</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Analytical Methods</td>
<td>1340, 1360</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Storage Stability</td>
<td>1380</td>
<td>Appendix H</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Feeding studies</td>
<td>1480</td>
<td>Appendix F</td>
<td>✓</td>
<td>as needed</td>
</tr>
<tr>
<td>Crop Field trials (MOR)</td>
<td>1500</td>
<td>Appendix B</td>
<td>✓</td>
<td>✓ (else where)</td>
</tr>
<tr>
<td>Processed food/feed</td>
<td>1520</td>
<td>Appendix E</td>
<td>✓</td>
<td>as needed</td>
</tr>
<tr>
<td>Confined Accumulation Rotational crops</td>
<td>1850</td>
<td>Appendix C</td>
<td>✓</td>
<td>as needed</td>
</tr>
<tr>
<td>Tolerance/MRL Proposal/Review</td>
<td>1550</td>
<td>Appendix I, D</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Supporting NOF, RA, residues at consumption</td>
<td>1560</td>
<td>Annex II, 6.0</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
3. Global Residue Programs

- Harmonized GAP (or worst case critical-GAP)
- Similar number of trials as current national requirements, yet larger global packages
- More robust data representative of global climates, regions, soils, use patterns, pest intensity
- Enables harmonized MRL’s globally
- Significant benefit on global trading of ag-commodities and reduction of food-chain issues
Example of a global program

• New insecticide with wide spectrum of use
 ➢ 600 trials in 4 continents
 ➢ 39 crops (fruits, veggies, grains, oilseeds)
 ➢ 8 – 44 trials/crop, in 2 - 4 geographies ★
 ➢ Harmonized GAP’s per crop @ c-GAP
Global residue program pre-OECD

- GAP’s globalized (allowing proportionality for regional flexibility to account for pest spectrum & intensity)
- Number of trials based on contribution
 - Weighted (1-3 scale) from 3 variables (size of planted area, food consumption intensity, frequency of trading)
 - Location in countries/regions representative for each crop (one from each N and S-hemisphere, or from the tropical belt)
 - Minimum number trials per zone dictated by the relevance of statistical interpretation (6-8?)
- Crop grouping/extrapolation
 - As per ICGCC (25% reduction of # trials), or
 - Super-crop grouping, as supported by GAP’s across crop-groups and countries (further reduction, as supported by statistical relevance of data)
Ideal Global Residue Package (example)

<table>
<thead>
<tr>
<th>Crops</th>
<th>Area</th>
<th>Consumption</th>
<th>Trading</th>
<th>Total Score</th>
<th>Min # trials</th>
<th>NAFTA</th>
<th>EU</th>
<th>BRAZIL</th>
<th>AUS&NZ</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>* low</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>6 (***, ****)</td>
<td>5-20</td>
<td>8-16</td>
<td>4</td>
<td>4-12</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>** moderate</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>9 (******, ******)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>*** high</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>12 (*******, ********)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Rice</td>
<td>***</td>
<td>**</td>
<td>**</td>
<td>12 (*******, *********)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Cucumber</td>
<td>**</td>
<td>***</td>
<td>**</td>
<td>12 (*******, *********)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>**</td>
<td>***</td>
<td>**</td>
<td>12 (*******, *********)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Cucumbers</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Broccoli/cauliflower</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Cabbage</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf-lettuce</td>
<td>*</td>
<td>***</td>
<td>**</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Head-lettuce</td>
<td>*</td>
<td>**</td>
<td>**</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Wheat</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>15 (*********)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>
Benefits from this Global Program

- Supported new regulation updates (OECD 509)
- Proved homogeneity of residue data produced in different regions at the same GAP
 - Variability of data across regions (avg 12%) is much lower than within any particular region (avg 78%)
- Concurrent registration submissions & reviews
 - OECD joint review (EPA, PMRA, APVMA)
 - Codex (draft-MRL’s available)
 - EU
- Cost optimization by crop, more MRLs proposed
4. Challenges for MRL harmonization

A. GAP (Good Agricultural Practices)
 - Rate, # applications and intervals, PHI
 - Variety of use practices for same crop
 - Variety of pests and their intensity
 - Agencies' flexibility around 25% GAP variation

➢ Harmonization at critical GAP (cGAP) globally
Challenges for MRL harmonization

B. Inputs for OECD-MRL calculator

- Single vs. replicate samples
- Average vs. highest across replicates
- Treatment of outliers
- Treatment of censored data (ND-non detects, LOD, LOQ)
- Bundling data across regions
- Bundling of data across crops (apricot, peach)

➢ Harmonized inputs for global data, average replicates (>8 trials), data as reported, bundling & outliers as supported by statistics
Challenges for MRL harmonization

C. Supporting Risk to Consumers

– Tiered approach for exposure
 1. MRL/tolerances
 2. Actual field data
 3. Monitoring

– Acceptance of refinement factors
 • Edibility, processing/cooking, % crop treated

– Agencies’ policies to incorporate drinking water

➢ Globalization of exposure refinement options
Challenges for MRL harmonization

D. Other Challenges (just a few more…)

- Raw Agricultural Commodity description (fruits w/wo pits, peel, forage, etc)
- Crop groups differences (ICGCC, Codex, EPA)
- GLP global implementation
- Analytical data reports (LOQ/LOD, corrected/uncorrected)
- Statistical interpretation of results (mean/median, HR/HAFT, U-test similarity subsets, Dixon-outliers)
- Agencies’ policies about residue definition, proportionality, zoning, bundling, extrapolation, mutual acceptance
Conclusion & Recommendation

• Technically it is feasible to develop **global residue packages** following OECD guidelines recently updated with representative trials at global locations

• Faster **availability MRLs and new technologies** to more countries

• **Minor crops** need special consideration through regulating extrapolation and mutual acceptance

• Further **guidelines updates** is needed for harmonized criteria to use global datasets and mutual acceptance of reviews between countries.
Let’s go global!

Please forward comments to:

Carmen Tiu
tcarmen@dow
1-317-337-4041